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Abstract. As is well known, the type 1 Lie superalgebrasl(r+1|s+1) admits a one-parameter
family of finite-dimensional irreducible representations. We have carried out an analytic Bethe
ansatz related to this family of representations. We present formulae, which are deformations of
previously proposed determinant formulae labelled by a Young superdiagram. These formulae
will provide a transfer matrix eigenvalue in a dressed vacuum form related to the solutions of
a graded Yang–Baxter equation, which depend not only on the spectral parameter but also on a
non-additive continuous parameter. A class of transfer matrix functional relations among these
formulae is briefly mentioned.

1. Introduction

The analytic Bethe ansatz [1, 2] is a powerful method that postulates the eigenvalues of
transfer matrices in solvable lattice models, associated with complicated representations of
underlying algebras, which are difficult to derive using other methods. We can construct
them systematically in the dressed vacuum form (DVF) by using YangiansY (G) [3] analogue
of skew-Young tableaux as in [4–6] forG = Ar , Br , Cr andDr .

Recently a similar analysis has been done [7, 8] of the Lie superalgebraG =
sl(r + 1|s + 1) [9] case. These results are related to the tensor representations. A class of
DVFs are obtained and shown to satisfy a set of functional relations. However, it is well
known that the type 1 Lie superalgebras admit a one-parameter family of finite-dimensional
irreducible representations, which is not tensor-like [10]. This is also the case with their
quantum analogue. Associated with this family of representations, are solutions [11–13] of
a graded Yang–Baxter equation, which depend on a non-additive continuous parameter. In
[7] we pointed out a possibility of extending the DVF related to the tensor representations
to the DVF related to a one-parameter family of finite-dimensional representations.

The purpose of this paper is to extend the DVF [7] to such representations. One of the
simplest examples is thesl(2|1) case (cf [14, 15])

T̃ 2
1+c(u) =

Q2(u− 1− c)
Q2(u+ 1+ c) − ψ3(u− 1+ c) Q1(u+ c)Q2(u− 1− c)

Q1(u+ 2+ c)Q2(u+ 1+ c)
−ψ3(u− 1+ c)Q1(u+ 4+ c)Q2(u− 1− c)

Q1(u+ 2+ c)Q2(u+ 3+ c)
+ψ3(u+ 1+ c)ψ3(u− 1+ c)Q2(u− 1− c)

Q2(u+ 3+ c) . (1.1)
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Note that this function depends on the continuous parameterc and is still non-trivially pole
free under the Bethe ansatz equation (BAE) (3.1). We shall construct a large family of
the DVF with such features. The auxilliary space of the function (1.1) is related to the
finite-dimensional representation with the highest weight(1+ c)(ε1 + ε2). For c ∈ Z>0, it
is tensor representation labelled by the Young superdiagram with shape((1+ c)2); while
for c /∈ Z, it is not tensor-like.

We execute the analytic Bethe ansatz based on the BAE (3.1) associated with the
distinguished simple root systems ofsl(r + 1|s + 1) [9]. Reshetikhin and Wiegmann
observed [16] remarkable phenomena that the BAE can be expressed by the root system of
a Lie algebra (see also [17] for thesl(r + 1|s + 1) case). Furthermore, Kunibaet al [6]
conjectured that the left-hand side of the BAE (3.1) can be expressed as a ratio of some
‘Drinfeld polynomials’ [3]. Then one can express the left-hand side of the BAE using the
Kac–Dynkin label, which characterizes the quantum space. In view of the fact [10] that
one can construct a finite-dimensional representation ofsl(r + 1|s + 1) whose(r + 1)th
Kac–Dynkin label takes on not only a non-negative integer value but also acomplexvalue,
we assume this is also the case with the left-hand side of the BAE (3.1). We introduce the
Young superdiagramλ ⊂ µ [18, 19] and define the functionTλ⊂µ(u) (3.19), which should
be the transfer matrix in the DVF whose auxiliary space is a finite-dimensional tensor
module of super Yangian [20, 21] or quantum affine superalgebra [22, 23], labelled by the
skew-Young superdiagramλ ⊂ µ; while the quantum space is a one-parameter family of
finite-dimensional representations which is not tensor-like. One can prove the pole freeness
of T a(u) = T(1a)(u) by the same method used in [7]. This is also the case with the function
Tλ⊂µ(u) since this function has determinant expressions whose matrix elements are only
the functions associated with Young superdiagrams with shapeλ = φ; µ = (m) or (1a).
Correspondingly to the complex-valued(r + 1)th Kac–Dynkin labelbr+1, we consider a
deformationT̃µ;c(u) of the functionTµ(u) by a continuous parameterc. This deformation
is compatible with the so-called top-term hypothesis [5, 6]. We prove the pole freeness
of the functionT̃µ;c(u), an essential property in the analytic Bethe ansatz. Then one may
think of the functionT̃µ;c(u) as a DVF whose auxialliary space and quantum space are both
parameter dependent. We present a class of transfer matrix functional relations among the
DVF. It may be viewed as a kind ofT -system [24] (see also [4, 6–8, 11, 15, 25–33]).

This paper is organized as follows. In section 2, we briefly review the Lie superalgebra
G = sl(r + 1|s + 1). In section 3, we execute the analytic Bethe ansatz based upon the
BAE (3.1) associated with distinguished simple root systems. We note that if we replace the
functionψa(u) with the one labelled by the Young superdiagram with shape(11), we can
reproduce many of our earlier results [7] for the functionTλ⊂µ(u). We prove pole freeness
of the functionT̃µ;c(u). We briefly mention functional relations for the DVF defined in this
section. Our main results are relation (3.23) and theorem 3.2. Section 4 is devoted to a
summary and discussion. Appendix A provides an example of the BAE forsl(2|1) with
the gradingp(1) = 1, p(2) = p(3) = 0 and appendix B gives an example of the DVF for
sl(1|2).

2. The Lie superalgebrasl(r + 1|s+ 1)

In this section, we briefly review the Lie superalgebraG = sl(r+1|s+1). A Lie superalgebra
[9] is a Z2 graded algebraG = G0̄ ⊕ G1̄ with a product [, ], whose homogeneous elements
obey the graded Jacobi identity.

There are several choices of simple root systems depending on the choices of Borel
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subalgebras. The simplest system of simple roots is the so-called distinguished one [9]. For
example, the distinguished simple root system{α1, . . . , αr+s+1} of sl(r + 1|s + 1) has the
following form

αi = εi − εi+1 i = 1, 2, . . . , r

αr+1 = εr+1− δ1

αj+r+1 = δj − δj+1 j = 1, 2, . . . , s

(2.1)

where ε1, . . . , εr+1; δ1, . . . , δs+1 are the basis of the dual space of the Cartan subalgebra
with the bilinear form( | ) such that

(εi |εj ) = δi j (εi |δj ) = (δi |εj ) = 0 (δi |δj ) = −δi j (2.2)

with an additional constraint:

ε1+ ε2+ · · · + εr+1− δ1− δ2− · · · − δs+1 = 0. (2.3)

{αi}i 6=r+s+1 are even roots andαr+s+1 is an odd root with(αr+s+1|αr+s+1) = 0.
Any weight can be expressed in the following form

3 =
r+1∑
i=1

3iεi +
s+1∑
j=1

3̄j δj 3i, 3̄j ∈ C. (2.4)

Let λ ⊂ µ be a skew-Young superdiagram labelled by the sequences of non-negative integers
λ = (λ1, λ2, . . .) andµ = (µ1, µ2, . . .) such thatµi > λi : i = 1, 2, . . . ; λ1 > λ2 > · · · > 0;
µ1 > µ2 > · · · > 0 andλ′ = (λ′1, λ′2, . . .) be the conjugate ofλ. There are two kinds of
irreducible tensor representations forsl(r + 1|s + 1). One of them is characterized by the
Young superdiagramµ:

3i = µi for 16 i 6 r + 1

3̄j = ηj for 16 j 6 s + 1
(2.5)

whereηj = max{µ′j − r − 1, 0}; µr+2 6 s + 1. In this case, the Kac–Dynkin label of3 is
given [34] as follows

bj = µj − µj+1 for 16 j 6 r
br+1 = µr+1+ η1

bj+r+1 = ηj − ηj+1 for 16 j 6 s.
(2.6)

A classification theorem for the finite-dimensional irreducible unitary representations of
gl(r + 1|s + 1) was discussed in [35].

Theorem 2.1.Let 3 be a real dominant weight. The irreduciblegl(r + 1|s + 1) module
V (3) with the highest weight3 is

(1) typical and type 1 unitary if

(3+ ρ, εr+1− δs+1) > 0

(2) or atypical and type 1 unitary if there exists 16 j 6 s + 1 such that

(3+ ρ, εr+1− δj ) = 0.

Hereρ is the graded half sum of positive roots:

ρ = 1
2

r+1∑
i=1

(r − s − 2i+ 1)εi + 1
2

s+1∑
j=1

(r + s − 2j + 3)δj . (2.7)
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This theorem was generalized to the type 1 quantum superalgebraUq(gl(r + 1|s + 1)) for
q > 0 [36]. As remarked in [12], this theorem will also be valid for the type 1 quantum
superalgebraUq(sl(r + 1|s + 1)) for q > 0. Applying theorem 2.1 to the aforementioned
irreducible tensor representation, one finds that [35]3 is typical and type 1 unitary if
µr+1 > s + 1; atypical and type 1 unitary ifµr+1 < s + 1.

There is a large class of finite-dimensional representations [10], which is not tensor-
like. For example, for the aforementioned irreducible tensor representations with the highest
weight3, a one-parameter family of irreducible representations with the highest weight (cf
[12, 35])

3(c) = 3+ cω
ω = ε1+ ε2+ · · · + εr+1

(2.8)

is typical and type 1 unitary if

(3(c)+ ρ, εr+1− δs+1) = µr+1+ ηs+1− s + c > 0. (2.9)

Note that the(r + 1)th Kac–Dynkin label of3(c) takes non-integer value if the parameter
c is non-integral.

The dimensionality of the typical representation ofsl(r + 1|s + 1) with the highest
weight3 is given [10] as follows

dimV (3) = 2(r+1)(s+1)
∏

16i6j6r

bi + bi+1+ · · · + bj + j − i + 1

j − i + 1

×
∏

r+26i6j6r+s+1

bi + bi+1+ · · · + bj + j − i + 1

j − i + 1
. (2.10)

As for the atypical finite-dimensional representation, the dimensionality is smaller than the
right-hand side of (2.10).

3. Analytic Bethe ansatz

Consider the following type of the BAE.

−
N∏
j=1

[u(a)k − w(a)j +
b
(a)
j

ta
]

[u(a)k − w(a)j −
b
(a)
j

ta
]
= (−1)deg(αa)

r+s+1∏
b=1

Qb(u
(a)
k + (αa|αb))

Qb(u
(a)
k − (αa|αb))

(3.1)

Qa(u) =
Na∏
j=1

[u− u(a)j ] (3.2)

where [u] = (qu − q−u)/(q − q−1); Na ∈ Z>0; u,w(a)j ∈ C; a, k ∈ Z (1 6 a 6 r + s + 1,

1 6 k 6 Na); ta = 1 (1 6 a 6 r + 1); ta = −1 (r + 2 6 a 6 r + s + 1); b(a)j ∈ Z>0

(16 a 6 r, r + 26 a 6 r + s + 1); b(r+1)
j ∈ C and

deg(αa) =
{

0 for even root

1 for odd root

= δa,r+1. (3.3)

In this paper, we suppose thatq is generic. The left-hand side of the BAE (3.1) is connected
with the quantum spaceW =⊗N

j=1Wj . We assumeWj is a finite-dimensional module of
super Yangian [20, 21] or quantum affine superalgebra [22, 23] whose classical counterpart
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is characterized by the highest weight with the Kac–Dynkin label(b
(1)
j , b

(2)
j , . . . , b

(r+s+1)
j ).

We can find various kinds of BAEs, which are related to special cases of the BAE (3.1)
in many literatures (for example, [11, 15, 17, 37–40]; see also [6, 14, 16, 41]). We suppose
that the origin of the left-hand side of the BAE (3.1) returns to the ratio of some ‘Drinfeld
polynomials’Pa(ζ ) (16 a 6 r + s+1) labelled by the Young superdiagram with shapeµ:

Pa(ζ ) =
µa−µa+1∏
i=1

(ζ − w + a − 2µa+1+ µ1− µ′1− 2i + 1) 16 a 6 r (3.4)

Pr+1(ζ ) =
µr+1+η1∏
i=1

(ζ − w + r − 2µr+1+ µ1− µ′1+ 2i) (3.5)

Pr+d+1(ζ ) =
ηd−ηd+1∏
i=1

(ζ − w − d + 2ηd+1+ r + µ1− µ′1+ 2i) 16 d 6 s (3.6)

whereµr+2 6 s + 1;
∏0
i=1(· · ·) = 1; w ∈ C. One can easily derive these polynomials

(3.4)–(3.6) using the empirical procedures mentioned in [6]. Thus we obtain the following
ratio of ‘Drinfeld polynomial’:

Pa

(
u+ 1

ta

)
Pa

(
u− 1

ta

) = u+ ba
ta
− w(a)

u− ba
ta
− w(a) (3.7)

wherew(a) ∈ C; the parameters{ba} denote the Kac–Dynkin label (2.6). In deriving
relation (3.7), we assume the parameters{ba} are non-negative integers. However, as is
well known [10], one can construct a finite-dimensional module whose highest weight is
labelled by a Kac–Dynkin label with non-negative integers{ba}a 6=r+1 and acomplexbr+1.
We then assume the parameterbr+1 in the relation (3.7) can take non-integer value by
‘analytic continuation’. Finally by multiplying a naturalq-analogue of (3.7) on each site,
we obtain the left-hand side of the BAE (3.1).

We define the sets

J = {1, 2, . . . , r + s + 2}
J+ = {1, 2, . . . , r + 1} J− = {r + 2, r + 3, . . . , r + s + 2} (3.8)

with the total order

1≺ 2≺ · · · ≺ r + s + 2 (3.9)

and with the grading

p(a) =
{

0 for a ∈ J+
1 for a ∈ J−.

(3.10)

For a ∈ J , set

z(a; u) = ψa(u)Qa−1(u+ a + 1)Qa(u+ a − 2)

Qa−1(u+ a − 1)Qa(u+ a) a ∈ J+

z(a; u) = ψa(u)Qa−1(u+ 2r − a + 1)Qa(u+ 2r − a + 4)

Qa−1(u+ 2r − a + 3)Qa(u+ 2r − a + 2)
a ∈ J−

(3.11)

whereQ0(u) = Qr+s+2(u) = 1. Hereafter, we shall consider the case where the quantum
spaceW = ⊗N

j=1Wj is a tensor-product of the moduleWj labelled by the Kac–Dynkin
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label of the formb(a)j = bj δa r+1 (16 a 6 r + s + 1). In this case, the vacuum part of the
function z(a; u) takes on the following form

ψa(u) =


1 for a ∈ J+
N∏
j=1

[u− wj + r + 1− bj ]
[u− wj + r + 1+ bj ] for a ∈ J−.

(3.12)

The generalization to the case of the more general quantum space will be achieved by
suitable redefinition of the functionψa(u), and such redefinition will not influence the
subsequent argument. We note that one can recover a function related to those in [17]
if one sets the parametersw(a)j , q and {b(a)j } in the BAE (3.1) to 0, 1 and those in (2.6)
respectively. In this paper, we often express the functionz(a; u) as the box a

u
, whose

spectral parameteru will often be abbreviated. Under the BAE (3.1), we have

Res
u=−d+u(d)k (z(d; u)+ z(d + 1; u)) = 0 16 d 6 r (3.13)

Res
u=−r−1+u(r+1)

k
(z(r + 1; u)− z(r + 2; u)) = 0 (3.14)

Res
u=−2r−2+d+u(d)k (z(d; u)+ z(d + 1; u)) = 0 r + 26 d 6 r + s + 1. (3.15)

On the skew-Young superdiagramλ ⊂ µ, we assign coordinates(i, j) ∈ Z2 such that the
row indexi increases as we move downwards and the column indexj increases as we move
from left to right and that(1, 1) is on the top left corner ofµ. Define an admissible tableau
b on the skew-Young superdiagramλ ⊂ µ as a set of elementsb(i, j) ∈ J labelled by the
coordinates(i, j) mentioned above, obeying the following rule (admissibility conditions).

(1) For any elements ofJ+

b(i, j) ≺ b(i + 1, j). (3.16)

(2) For any elements ofJ−

b(i, j) ≺ b(i, j + 1). (3.17)

(3) For any elements ofJ

b(i, j) � b(i, j + 1) b(i, j) � b(i + 1, j). (3.18)

Let B(λ ⊂ µ) be the set of admissible tableaux onλ ⊂ µ. For any skew-Young
superdiagramλ ⊂ µ, define the functionTλ⊂µ(u) as follows

Tλ⊂µ(u) =
∑

b∈B(λ⊂µ)

∏
(i,j)∈(λ⊂µ)

(−1)p(b(i,j))z(b(i, j); u− µ1+ µ′1− 2i + 2j) (3.19)

where the product is taken over the coordinates(i, j) on λ ⊂ µ. If we replace the vacuum
partψa(u) (3.12) of the functionT(11)(u) with the one labelled by the Young superdiagram
with shape(11), the functionT(11)(u) corresponds to the eigenvalue formula of the transfer
matrix of the Perk–Schultz model [41–43] (see also [17]). In this case, a special case of
the functionT(11)(u) reduces to the eigenvalue formula by the algebraic Bethe ansatz (for
example, [44]:r = 1, s = 0 case; [45]:r = 0, s = 1 case; [46, 47]:r = s = 1 case).

The following relations should be valid [7].

Tλ⊂µ(u) = det
16i,j6µ1

(T µ
′
i−λ′j−i+j

1 (u− µ1+ µ′1− µ′i − λ′j + i + j − 1)) (3.20)

= det
16i,j6µ′1

(T 1
µj−λi+i−j (u− µ1+ µ′1+ µj + λi − i − j + 1)) (3.21)
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whereT am (u) = T(ma)(u). These relations will be verified by the same method mentioned
in [6]. We remark that the formula (3.19) reduces to the (classical) supercharacter formula
if we set

a → exp(εa) for a ∈ J+
a → exp(δa−r−1) for a ∈ J−.

(3.22)

In this case, the functions (3.20) and (3.21) reduce to the Jacobi–Trudi formulae on
supersymmetric Schur functions [18, 19, 48, 49].

The following theorem is essential in the analytic Bethe ansatz.

Theorem 3.1 ([7]).For any integera, the functionT a1 (u) is free of poles under the condition
that the BAE (3.1) is valid†.

Applying theorem 3.1 to (3.20), one can show thatTλ⊂µ(u) is free of poles under the
BAE (3.1).

Owing to the admissibility conditions (3.16)–(3.18), for any Young superdiagramµ

(µr+1 > s+1, µ′1 > r+1) and non-negative integerc, only such tableaub ∈ B(µ+ (cr+1))

asb(i, j) = i for 1 6 i 6 r + 1, 1 6 j 6 c; b(i, j) ∈ J− for r + 2 6 i 6 µ′1, 1 6 j 6 µi
is admissible. Then the following relation is valid:

Tµ+(cr+1)(u) =
Qr+1(u− c + µ′1− µ1− r − 1)

Qr+1(u+ c + µ′1− µ1− r − 1)
Tµ̂(u+ µ′1+ c − r − 1)

×Hν(u− µ1+ µr+2− c − r − 1) (3.23)

whereµ+ (cr+1) = (µ1+c, µ2+c, . . . , µr+1+c, µr+2, . . . , µµ′1), µ̂ = (µ1, µ2, . . . , µr+1),
ν = (ν1, ν2, . . . , νµ′1−r−1) = (µr+2, µr+3, . . . , µµ′1) andHν(u) is the functionTν(u) whose
admissible tableauxB(ν) are restricted to the sets of elements of the setJ−.

As a corollary we have (see [7])

T r+1
c+s+1(u) = T((c+s+1)r+1)(u)

= Qr+1(u− c − s − 1)

Qr+1(u+ c − s − 1)
× T r+1

s+1 (u+ c). (3.24)

In deriving relations (3.23) and (3.24), we assumec ∈ Z>0. However, these relations will
also be valid forc ∈ C by ‘analytic continuation’. We can easily observe this fact from the
right-hand side of relations (3.23) and (3.24). Denote the right-hand side of relations (3.23)
and (3.24) byT̃µ;c(u)‡ and T̃ r+1

c+s+1(u), respectively for arbitraryc ∈ C. A crucial condition

for the functionT̃µ;c(u) to be the eigenvalue formula of a transfer matrix is given as follows.

Theorem 3.2.For anyc ∈ C, the functionT̃µ;c(u) is free of poles under the condition that
the BAE (3.1) is valid.

As a corollary, we have the following.

Corollary 3.3. For anyc ∈ C, the functionT̃ r+1
c+s+1(u) is free of poles under the condition

that the BAE (3.1) is valid.

For anyc ∈ Z>0, theorem 3.2 and corollary 3.3 follow from [7], while for anyc ∈ C, they
require proofs. In proving theorem 3.2, we use the following lemmas.

† Hereafter singularities of the vacuum parts of the DVFs, which can be removed by multiplying overall scalar
functions are out of the question.
‡ See appendix B for an example ofT̃µ;c(u).
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Lemma 3.4.The function

Tµ̂(u)
Qr+1(u− µ1)

(3.25)

is free of poles under the condition that the BAE (3.1) is valid.

Proof. Owing to [7], the functionTµ̂(u) is free of poles under the BAE (3.1). We only have
to show that function (3.25) is free of poles atu = u(r+1)

k +µ1 : k = 1, . . . , Nr+1. We shall
show thatTµ̂(u) is divisible byQr+1(u−µ1). In the set{z(a; u+ ξ) : a ∈ J, ξ ∈ C}, only
z(r+1; u− r+1−µ1) andz(r+2; u− r+1−µ1) haveQr+1(u−µ1) in their numerators.
Thus we only have to show that every term inTµ̂(u) containsz(r + 1; u− r + 1− µ1) or
z(r + 2; u − r + 1− µ1). Then all we have to do is to show thatb(r + 1, 1) = r + 1 or
r +2 in (3.19) forλ = φ,µ = µ̂ since the argument ofz(b(i, j); u−µ1+ r +1−2i+2j)
in (3.19) becomesu − r + 1− µ1 only when its coordinate is(i, j) = (r + 1, 1). From
the admissibility conditions, we can develop the following argument. Ifb(r + 1, 1) � r
thenb(1, 1) ≺ 1 sinceb(r + 1, 1) ∈ J+; b(1, 1) ≺ b(2, 1) ≺ · · · ≺ b(r + 1, 1) � r. This
contradicts the fact thatb(1, 1) ∈ J . If b(r + 1, 1) � r + 3 thenb(r + 1, µr+1) � r + s + 2
sinceb(r+1, 1) ∈ J−; r+3� b(r+1, 1) ≺ b(r+1, 2) ≺ · · · ≺ b(r+1, µr+1); µr+1 > s+1.
This contradicts the fact thatb(r + 1, µr+1) ∈ J . Thusb(r + 1, 1) must ber + 1 or r + 2.
In [7], we did not use the factorQr+1(u− µ1) to prove the fact thatTµ̂(u) does not have
a colourr + 1 pole under the BAE (3.1). So division byQr+1(u− µ1) does not influence
the proof of the pole freeness ofTµ̂(u) under the BAE (3.1). Therefore function (3.25) is
free of poles under the BAE (3.1). �

Lemma 3.5.
(1) The functionHν(u) is free of colourb (b ∈ J − {r + 1, r + s + 2}) poles under the

condition that the BAE (3.1) is valid.
(2) The function

Qr+1(u− ν1+ ν ′1+ r + 1)Hν(u) (3.26)

is free of poles under the condition that the BAE (3.1) is valid.

Proof.
(1) One can verify the following relation in the same way as relation (3.20).

Hν(u) = det
16i,j6ν1

(Hν
′
i−i+j

1 (u− ν1+ ν ′1− ν ′i + i + j − 1)) (3.27)

whereHam(u) = H(ma)(u). Then we only have to show that the functionHa1(u) is free of
colourb (b ∈ J −{r +1, r + s+2}) poles under the BAE (3.1). For simplicity, we assume
that the vacuum parts are formally trivial, that is, the left-hand side of the BAE (3.1) is
constantly−1. The functionz(d; u) = d

u
with d ∈ J has the colourb pole only for

d = b or b + 1, so we shall trace onlyb or b + 1 (b ∈ J− − {r + s + 2}). DenoteSk
the partial sum ofHa1(u), which containsk boxes amongb or b + 1 . Apparently,S0

does not have colourb pole. Owing to relation (3.15),S1 does not have a colourb pole
(b 6= r + 1) under the BAE (3.1).
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The case(k > 2): Sk is the summation of the tableaux of the form

f (k, n, ξ, ζ, u) :=

ξ

b v

...

b v−2n+2

b + 1 v−2n
...

b + 1 v−2k+2

ζ

= Qb−1(v + 2r + 3− b − 2n)Qb(v + 2r + 4− b)
Qb−1(v + 2r − b + 3)Qb(v + 2r + 4− b − 2n)

×Qb(v + 2r + 2− b − 2k)Qb+1(v + 2r + 3− b − 2n)

Qb(v + 2r + 2− b − 2n)Qb+1(v + 2r + 3− b − 2k)
X 06 n 6 k

(3.28)

where ξ and ζ are columns with total lengtha−k, which do not containb and b + 1 ;
b ∈ J− − {r + s + 2}; v = u + h: h is some shift parameter and is independent ofn; the
function X does not have a colourb pole and is independent ofn. f (k, n, ξ, ζ, u) has
colourb poles atu = −h−2r −2+ b+2n+u(b)p andu = −h−2r −4+ b+2n+u(b)p for
16 n 6 k−1; atu = −h−2r−2+b+u(b)p for n = 0 ; atu = −h−2r−4+b+2k+u(b)p
for n = k. Obviously, colourb residue atu = −h−2r−2+b+2n+u(b)p in f (k, n, ξ, ζ, u)
andf (k, n+1, ξ, ζ, u) cancel each other under the BAE (3.1). Thus, under the BAE (3.1),∑k

n=0 f (k, n, ξ, ζ, u) is free of colourb poles (b 6= r + 1), so isSk.

(2) Among the boxes{ a : a ∈ J−}, only the box r + 2 has colourr + 1 pole. We

shall show that the colourr + 1 poles inHν(u), which originate from the boxr + 2 are

cancelled byQr+1(u − ν1 + ν ′1 + r + 1). Owing to the admissibility conditions,r + 2
appears consecutively only at the points(1, 1), (2, 1), . . . , (k,1) : k 6 ν ′1 in each term of

Hν(u). Then the contribution ofr + 2 to the term ofHν(u) which containsk r + 2 is

k∏
j=1

z(r + 2, u− ν1+ ν ′1− 2j + 2)

= Qr+1(u− ν1+ ν ′1+ r + 1− 2k)Qr+2(u− ν1+ ν ′1+ r + 2)

Qr+1(u− ν1+ ν ′1+ r + 1)Qr+2(u− ν1+ ν ′1+ r + 2− 2k)
. (3.29)

Thus, the colourr + 1 poles inHν(u), which originated from r + 2 are cancelled by
Qr+1(u− ν1+ ν ′1+ r + 1). �

The dress part of the functioñTµ;c(u) carriessl(r + 1|s + 1) weight3(c) (2.8). One
can observe this fact from the ‘top term’ [5, 6] of the function. The ‘top term’ is considered
to be related with the highest weight vector. We speculate the ‘top term’ of the function
T̃µ;c(u) for large |q| is proportional to

Qr+1(u− c + µ′1− µ1− r − 1)

Qr+1(u+ c + µ′1− µ1− r − 1)
×

r+1∏
i=1

µi∏
j=1

z(i; u− µ1+ µ′1+ c − 2i + 2j)

×
s+1∏
j=1

ηj∏
i=1

z(r + j + 1; u− µ1+ µ′1− c − 2r − 2− 2i + 2j)

≈ q−2(3(c)|∑r+s+1
a=1 Naαa) = q−2

∑r+s+1
i=1 Nitibi−2Nr+1tr+1c (3.30)
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where we omit the vacuum part. We may think of this circumstance as a generalization of
the top-term hypothesis [5, 6] to the case of the non-integral highest weight. We believe
that the functionT̃µ;c(u) yields actual spectra of the transfer matrix whose auxiliary space is
characterized by the highest weight3(c) at least as long as the typicality condition (2.9) is
satisfied. In fact, special cases of the functionT̃µ;c(u) are in agreement with the results: for
example, forsl(2|1);µ = (21) case: [14, 15] (see also [11]). For the functionT̃µ;c(u), one
will be able to use theR matrix which is constructed by the tensor product graph method
[12, 13].

As for negative integerc, care should be taken because the atypicality condition may
hold. In this case, the dimensionality of the moduleV (3(c)) is no longer the one given by
formula (2.10). For example, forsl(2|2) case,T̃ 2

1 (u) has the form

T̃ 2
1 (u) = T 2

1 (u)+ ψ3(u− 3)ψ3(u− 1)T 1
2 (u). (3.31)

In this case, the eigenvalue formula in the DVF labelled by the Young superdiagram with
shape(12) will be the functionT 2

1 (u) rather than the functioñT 2
1 (u).

Now we briefly mention the functional relations among the functions introduced in this
section. Thanks to the Jacobi identity, the following relation holds

T am (u− 1)T am (u+ 1) = T am−1(u)T am+1(u)+ T a−1
m (u)T a+1

m (u) (3.32)

where a,m ∈ Z>0. This functional relation is a specialization of the Hirota bilinear
difference equation [50] and it is the same as the functional relation discussed in [7] except
for the vacuum part. Other functional relations in [7] are also valid except for the vacuum
part. Note, however, that there are another functional relations, which arise from a one-
parameter family of finite-dimensional representations. For example,T̃µ;c(u) satisfies

T̃µ;c(u− d)T̃µ;c(u+ d) = T̃µ;c−d(u)T̃µ;c+d(u) (3.33)

wherec, d ∈ C. Forµ = (mr+1),m ∈ Z>s+1; c = 0; d = 1, this functional relation reduces
to the one in [7].

4. Summary and discussion

In this paper, we have executed the analytic Bethe ansatz related to a one-parameter family
of finite-dimensional representations of the type 1 Lie superalgebrasl(r + 1|s + 1) based
on the BAE (3.1) with the distinguished simple root system ofsl(r + 1|s + 1). Eigenvalue
formulae of transfer matrices in DVF are proposed for a one-parameter family of finite-
dimensional representations. The key is the top-term hypothesis and the observation that
(r + 1)th Kac–Dynkin label can take non-integer value. Pole freeness of the DVF was
shown. Functional relations have been given for the DVF.

We emphasize that our method explained in this paper is still valid even if factors such
as gauge factor, extra sign (different from(−1)deg(αa) in (3.1)), etc appear in the BAE (3.1),
provided that such factors do not influence the analytical property of the right-hand side of
the BAE (3.1).

There is a remarkable coincidence [51, 52] between the free field realization of the
generators ofUq(G(1)) associated with the classical simple Lie algebrasG and the eigenvalue
formulae [5] in the analytic Bethe ansatz. As for a Lie superalgebraG case, especially in
relation to a one-parameter family of finite-dimensional irreducible representations, such a
relation has not been discussed to date. An extensive study will be desirable.

The Lie superalgebras or their quantum analogues are not straightforward generalizations
of their non-supercounterparts. They have several inequivalent sets of simple root systems
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depending on the choices of their Borel subalgebras. In view of this fact, we generalized
[8] our result [7] to any simple root system ofsl(r + 1|s + 1). We then discussed relations
among sets of the BAE for any simple root systems using the particle–hole transformation
[53]. We pointed out that the particle–hole transformation is related to the reflection with
respect to the element of the Weyl supergroup for odd simple rootα with (α|α) = 0.

There is another type 1 superalgebra osp(2|2n), which also admits a one-parameter
family of finite-dimensional representations (see [54, 55]). It will be an interesting problem
to extend a similar analysis discussed in this paper related to osp(2|2n).

Functional relations among fusion transfer matrices atfinite temperatures have been
given recently in [56] and these functional relations are transformed into TBA equations
(thermodynamic Bethe ansatz equations) without using string hypothesis. These TBA
equations do not carry continuous parameters, which we discussed in this paper. Whether
we can derive TBA equations with continuous parameters from our functional relations is
an open problem.
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Appendix A. An example of the BAE for p(1) = 1,p(2) = p(3) = 0 grading

Based on the knowledge presented in [6], we will consider the BAE forsl(2|1) with the
gradingp(1) = 1, p(2) = p(3) = 0. In this case, the simple roots, the sets (3.8) and the
functions (3.11) have the formα1 = δ1− ε1, α2 = ε1− ε2, J+ = {2, 3}, J− = {1} and

1 = ψ1(u)
Q1(u+ 1)

Q1(u− 1)
2 = ψ2(u)

Q1(u+ 1)Q2(u− 2)

Q1(u− 1)Q2(u)
3 = ψ3(u)

Q2(u+ 2)

Q2(u)

(A.1)

respectively (see [7, 8]). The top term labelled by the Young superdiagram with shape(11)

is proportional to 1 , we then find that the ‘Drinfeld polynomial’ is

Pa(ξ) =
{
ξ − w for a = 1

1 for a = 2.
(A.2)

For anyb ∈ Z>1, the top term labelled by the Young superdiagram with shape(b2) will be
proportional to

1 2 · · · 2
1 3 · · · 3

=
b+1∏
j=1

Q1(u+ 2j + 1− b − 2)

Q1(u+ 2j − 1− b − 2)
(A.3)

where we omit the vacuum part. We then find that the ‘Drinfeld polynomial’ has the
following form

Pa(ξ) =


b+1∏
j=1

(ξ − w − 2j + b + 2) for a = 1

1 for a = 2.

(A.4)
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Following [6], the BAE whose vacuum part corresponds to the quantum spaceW =⊗N
j=1Wj labelled by the Young superdiagrams with shape(b2): j = 1 and(11): 26 j 6 N

reads as follows

[u(1)k − w1− b − 1]

[u(1)k − w1+ b + 1]

N∏
j=2

[u(1)k − wj − 1]

[u(1)k − wj + 1]
= Q2(u

(1)
k − 1)

Q2(u
(1)
k + 1)

−1= Q1(u
(2)
k − 1)Q2(u

(2)
k + 2)

Q1(u
(2)
k + 1)Q2(u

(2)
k − 2)

(A.5)

where the parameters{ta} are t1 = −1 and t2 = 1. We assume that the parameterb can
take non-integer value by ‘analytic continuation’ as in section 3. Note that this BAE is in
relation to the one in [38]. The vacuum partψa(u) of the function a is determined so as

to make the functionT 1
1 (u) = − 1 + 2 + 3 to be free of poles under the BAE (A.5).

Up to an overall scalar function, we have

ψ1(u) = 1 (A.6)

ψ2(u) = ψ3(u) = [u− w1+ b]

[u− 2− w1− b]

N∏
j=2

[u− wj ]
[u− wj − 2]

. (A.7)

Compare the BAE (A.5) with the one (3.1) forsl(2|1) with the gradingp(1) = p(2) = 0,
p(3) = 1 and b(1)1 = 0; b(1)j = 1: 2 6 j 6 N ; b(2)1 = b; b(2)j = 0: 2 6 j 6 N ,

whose vacuum part also originates from the quantum spaceW =⊗N
j=1Wj labelled by the

Young superdiagrams with shape(b2): j = 1; (11): 2 6 j 6 N and analytic continuation
argument. Note that this BAE is also in relation to the one in [38].

Appendix B. An example of the DVF

In this section, we present an example of the DVFT̃µ;c(u) and theorem 3.2 forsl(1|2);
µ = (2, 1) ; bj = b (in (3.12));J+ = {1}; J− = {2, 3} case:

T̃(2,1);c(u) = Q1(u− c − 1)

Q1(u+ c − 1)
T(2)(u+ c + 1)H(1)(u− c − 2)

= φ(−1− b − c + u)
φ(−1+ b − c + u)

{
− Q1(−3− c + u)Q2(−c + u)
Q1(3+ c + u)Q2(−2− c + u)

−φ(1− b + c + u)φ(3− b + c + u)Q1(−1− c + u)Q2(−4− c + u)
φ(1+ b + c + u)φ(3+ b + c + u)Q1(1+ c + u)Q2(−2− c + u)

− φ(1− b + c + u)φ(3− b + c + u)Q1(−3− c + u)Q2(−c + u)
φ(1+ b + c + u)φ(3+ b + c + u)Q1(1+ c + u)Q2(−2− c + u)
+ φ(3− b + c + u)Q1(−1− c + u)Q2(−4− c + u)Q2(c + u)
φ(3+ b + c + u)Q1(1+ c + u)Q2(−2− c + u)Q2(2+ c + u)
+ φ(3− b + c + u)Q1(−3− c + u)Q2(−c + u)Q2(c + u)
φ(3+ b + c + u)Q1(1+ c + u)Q2(−2− c + u)Q2(2+ c + u)
+φ(3− b + c + u)Q1(−1− c + u)Q2(−4− c + u)Q2(4+ c + u)
φ(3+ b + c + u)Q1(3+ c + u)Q2(−2− c + u)Q2(2+ c + u)

+ φ(3− b + c + u)Q1(−3− c + u)Q2(−c + u)Q2(4+ c + u)
φ(3+ b + c + u)Q1(3+ c + u)Q2(−2− c + u)Q2(2+ c + u)
−Q1(−1− c + u)Q2(−4− c + u)
Q1(3+ c + u)Q2(−2− c + u)

}
(B.1)
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where

T(2)(u) = 1 1 − 1 2 − 1 3 + 2 3

= Q1(−2+ u)
Q1(2+ u) −

φ(2− b + u)Q1(−2+ u)Q2(3+ u)
φ(2+ b + u)Q1(2+ u)Q2(1+ u)

−φ(2− b + u)Q1(−2+ u)Q2(−1+ u)
φ(2+ b + u)Q1(u)Q2(1+ u)

+φ(−b + u)φ(2− b + u)Q1(−2+ u)
φ(b + u)φ(2+ b + u)Q1(u)

(B.2)

H(1)(u) = − 2 − 3 = −φ(1− b + u)
φ(1+ b + u)

{
Q1(−1+ u)Q2(2+ u)
Q1(1+ u)Q2(u)

+ Q2(−2+ u)
Q2(u)

}
(B.3)

φ(u) =
N∏
j=1

[u− wj ]. (B.4)

The first term in the right-hand side of (B.1) is the top term, which is related to the highest
weight(2+c)ε1+δ1. Owing to theorem 3.2, the DVF (B.1) is pole-free under the following
BAE

φ(u
(1)
k + b)

φ(u
(1)
k − b)

= Q2(u
(1)
k + 1)

Q2(u
(1)
k − 1)

16 k 6 N1

−1= Q1(u
(2)
k + 1)Q2(u

(2)
k − 2)

Q1(u
(2)
k − 1)Q2(u

(2)
k + 2)

16 k 6 N2.

(B.5)

We note the fact that if the parameterc is a positive integer,̃T(2,1);c(u) has a determinant
expression whose matrix elements are only the functions labelled by Young superdiagrams
with one column:

T̃(2,1);c(u) = T(2+c,1)(u)
= det

16i,j6c+2
(T µ

′
i−i+j

1 (u− c − µ′i + i + j − 1)) (B.6)

whereµ′1 = 2; µ′i = 1: 26 i 6 c + 2; c ∈ Z>0.
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