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Abstract. As is well known, the type 1 Lie superalgebiid- +1|s 4+ 1) admits a one-parameter
family of finite-dimensional irreducible representations. We have carried out an analytic Bethe
ansatz related to this family of representations. We present formulae, which are deformations of
previously proposed determinant formulae labelled by a Young superdiagram. These formulae
will provide a transfer matrix eigenvalue in a dressed vacuum form related to the solutions of
a graded Yang—Baxter equation, which depend not only on the spectral parameter but also on a
non-additive continuous parameter. A class of transfer matrix functional relations among these
formulae is briefly mentioned.

1. Introduction

The analytic Bethe ansatz [1, 2] is a powerful method that postulates the eigenvalues of
transfer matrices in solvable lattice models, associated with complicated representations of
underlying algebras, which are difficult to derive using other methods. We can construct
them systematically in the dressed vacuum form (DVF) by using Yangi&is[3] analogue
of skew-Young tableaux as in [4-6] fet = A,, B,, C, and D,.
Recently a similar analysis has been done [7, 8] of the Lie superalggbea
sl(r +1|s 4+ 1) [9] case. These results are related to the tensor representations. A class of
DVFs are obtained and shown to satisfy a set of functional relations. However, it is well
known that the type 1 Lie superalgebras admit a one-parameter family of finite-dimensional
irreducible representations, which is not tensor-like [10]. This is also the case with their
guantum analogue. Associated with this family of representations, are solutions [11-13] of
a graded Yang-Baxter equation, which depend on a non-additive continuous parameter. In
[7] we pointed out a possibility of extending the DVF related to the tensor representations
to the DVF related to a one-parameter family of finite-dimensional representations.
The purpose of this paper is to extend the DVF [7] to such representations. One of the
simplest examples is the€(2|1) case (cf [14, 15])
72 = QW10 g Q0010
O2(u+1+c¢) Q1(u+2+¢)Q2(u+1+0)
s — 140240 =10
Q1(u+2+¢)Q2(u+3+0)
Q(u—1—0)
Q2(u+3+c¢)

+Y3(u+ 1+ )Ys(u —1+c¢) (1.1
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Note that this function depends on the continuous paraneeded is still non-trivially pole

free under the Bethe ansatz equation (BAE) (3.1). We shall construct a large family of
the DVF with such features. The auxilliary space of the function (1.1) is related to the
finite-dimensional representation with the highest weidht ¢)(e1 + €2). Forc € Zo, it

is tensor representation labelled by the Young superdiagram with gliagec)?); while

for ¢ ¢ Z, it is not tensor-like.

We execute the analytic Bethe ansatz based on the BAE (3.1) associated with the
distinguished simple root systems of(r + 1|s + 1) [9]. Reshetikhin and Wiegmann
observed [16] remarkable phenomena that the BAE can be expressed by the root system of
a Lie algebra (see also [17] for thé(r + 1|s + 1) case). Furthermore, Kunibet al [6]
conjectured that the left-hand side of the BAE (3.1) can be expressed as a ratio of some
‘Drinfeld polynomials’ [3]. Then one can express the left-hand side of the BAE using the
Kac—Dynkin label, which characterizes the quantum space. In view of the fact [10] that
one can construct a finite-dimensional representation/ @f+ 1|s + 1) whose (r + 1)th
Kac—Dynkin label takes on not only a non-negative integer value but atemplexvalue,
we assume this is also the case with the left-hand side of the BAE (3.1). We introduce the
Young superdiagram C p [18, 19] and define the functiof, -, («) (3.19), which should
be the transfer matrix in the DVF whose auxiliary space is a finite-dimensional tensor
module of super Yangian [20, 21] or quantum affine superalgebra [22, 23], labelled by the
skew-Young superdiagrath C w; while the quantum space is a one-parameter family of
finite-dimensional representations which is not tensor-like. One can prove the pole freeness
of 7¢(u) = 71¢)(u) by the same method used in [7]. This is also the case with the function
T.c.(u) since this function has determinant expressions whose matrix elements are only
the functions associated with Young superdiagrams with shape¢; u = (m) or (1%).
Correspondingly to the complex-valuéd + 1)th Kac—Dynkin labelb,,;, we consider a
deformationf,m(u) of the function7, (x) by a continuous parameter This deformation
is compatible with the so-called top-term hypothesis [5, 6]. We prove the pole freeness
of the functionﬁ;c(u), an essential property in the analytic Bethe ansatz. Then one may
think of the functionﬁ;c(u) as a DVF whose auxialliary space and quantum space are both
parameter dependent. We present a class of transfer matrix functional relations among the
DVF. It may be viewed as a kind df-system [24] (see also [4,6-8, 11,15, 25-33]).

This paper is organized as follows. In section 2, we briefly review the Lie superalgebra
G = sl(r + 1]s + 1). In section 3, we execute the analytic Bethe ansatz based upon the
BAE (3.1) associated with distinguished simple root systems. We note that if we replace the
function v, (1) with the one labelled by the Young superdiagram with sh@dpg we can
reproduce many of our earlier results [7] for the functiBr (). We prove pole freeness
of the functionf;;c(u). We briefly mention functional relations for the DVF defined in this
section. Our main results are relation (3.23) and theorem 3.2. Section 4 is devoted to a
summary and discussion. Appendix A provides an example of the BAK/{@t1l) with
the gradingp(1) = 1, p(2) = p(3) = 0 and appendix B gives an example of the DVF for
s1(1)2).

2. The Lie superalgebrasl(r + 1|s + 1)

In this section, we briefly review the Lie superalge@ra- sl(r+1|s+1). A Lie superalgebra
[9] is aZ, graded algebr& = Gy & G; with a product [], whose homogeneous elements
obey the graded Jacobi identity.

There are several choices of simple root systems depending on the choices of Borel
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subalgebras. The simplest system of simple roots is the so-called distinguished one [9]. For
example, the distinguished simple root systgm), ..., a1} Of si(r + 1|s + 1) has the
following form

Q=€ — €11 i=12,...,r
o1 =€41— 81 (2.1)
®jyrp1 = 0j — 841 j=12...,s
wherees, ..., €.41; 81, ..., 8,41 are the basis of the dual space of the Cartan subalgebra
with the bilinear form(|) such that
(€il€j) = di ) (€i18)) = (dile)) =0 (8il8j) = —6; (2.2)

with an additional constraint:
etet - teu—8—d——5u1=0 (2.3)

{ai}izr4+s+1 @re even roots and, .41 is an odd root with(et, 1s41|etr15+1) = 0.
Any weight can be expressed in the following form

r+1 s+1
A= Zl Aiei + Zl Aj8.,- Ai’ Aj e C. (24)
i= Jj=

Let» C u be a skew-Young superdiagram labelled by the sequences of non-negative integers
A= (A1, Ap,..)andu = (1, no,...)suchthau; > A; :i=1,2,...; A =2 Ap>--->0;

m1 = p = --- = 0andA = (A1, A5, ...) be the conjugate of. There are two kinds of
irreducible tensor representations #dtr + 1|s + 1). One of them is characterized by the
Young superdiagran:

A= fori<i<r+1
_ (2.5)
wheren; = max{u;. —r—1,0}; u42 < s+ 1. Inthis case, the Kac—Dynkin label of is

given [34] as follows

bj = wj — pjr1 for1<j<r
bry1=r1+m (2.6)
bjtry1 =1 — Nj+1 for1<j<s.

A classification theorem for the finite-dimensional irreducible unitary representations of
gl(r + 1|s + 1) was discussed in [35].

Theorem 2.1Let A be a real dominant weight. The irreducitgé(r 4+ 1|s + 1) module
V(A) with the highest weight\ is
(1) typical and type 1 unitary if

(A+p,€641—841) >0
(2) or atypical and type 1 unitary if there exists<lj < s + 1 such that
(A+p,€41—38) =0.

Here p is the graded half sum of positive roots:

r+1 s+1
p=3Y (r—s—2i+De+3Y (r+s—2j+3)3. 2.7)
i=1 j=1
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This theorem was generalized to the type 1 quantum superal@gloga(r + 1|s + 1)) for
g > 0 [36]. As remarked in [12], this theorem will also be valid for the type 1 quantum
superalgebrd/, (sI(r + 1|s + 1)) for ¢ > 0. Applying theorem 2.1 to the aforementioned
irreducible tensor representation, one finds that [A5]s typical and type 1 unitary if
ur+1 = § + 1; atypical and type 1 unitary i, 1 < s + 1.

There is a large class of finite-dimensional representations [10], which is not tensor-
like. For example, for the aforementioned irreducible tensor representations with the highest
weight A, a one-parameter family of irreducible representations with the highest weight (cf

[12, 35])
Alc) = A
(c) + cw 2.8)
w=€+e+ - +€q41

is typical and type 1 unitary if

(Ale) +p, €41 — 8541) = 1+ 511 — s +¢ > 0. (29)

Note that the(r 4+ 1)th Kac—Dynkin label ofA (c) takes non-integer value if the parameter
¢ is non-integral.

The dimensionality of the typical representation séfr + 1|s + 1) with the highest
weight A is given [10] as follows

dimv(A) = 2096+ T bitbipit- bt i+l

1<i<j<r J-i+l
% l—[ bi+bi+l+"'+bj+j—i+1 (210)
j—i+1 ' '

r+2<i<j<r+s+1

As for the atypical finite-dimensional representation, the dimensionality is smaller than the
right-hand side of (2.10).

3. Analytic Bethe ansatz

Consider the following type of the BAE.

U@ — @ b(”’ rs+1 (@
u)
2. = (- 1)dega » l—[ Qb(M(a) + (oglap)) (3.1)
b Op(uy " — (aglap))

(a) (a)
tu

Na
Qu(u) = [ Jlu — u”] (3.2)
j=1
where ] = (¢* —q¢™)/(q —q™Y); N, €Z>o,uw €Cia,keZ(l<asr+s+1,

1<k<N)t,=1A<a<r+1t,=-1¢+2<a \r+s+1),bj(-”)€Z>o
1<a<rr+2<a \r+s+1);b;’+1)e<Cand

de ) 0 for even root
o) = 1 for odd root
= 8u,r+1~ (33)

In this paper, we suppose thais generic. The left-hand side of the BAE (3.1) is connected
with the quantum spac® = ®]N:1 W;. We assumd¥; is a finite-dimensional module of
super Yangian [20, 21] or quantum affine superalgebra [22, 23] whose classical counterpart
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is characterized by the highest weight with the Kac-Dynkin labgl, b, ... b7 *+Y).

We can find various kinds of BAEs, which are related to special cases of the BAE (3.1)
in many literatures (for example, [11, 15, 17, 37-40]; see also [6, 14, 16, 41]). We suppose
that the origin of the left-hand side of the BAE (3.1) returns to the ratio of some ‘Drinfeld
polynomials’ P,(¢) (1 < a < r+s+1) labelled by the Young superdiagram with shape

Ma—HMHa+1
Pu(¢) = 1_[ C-—wHa—2p1+pn1—p;—2i+1) 1<axr (3.4)
i=1
Mry1+m
Pri1(g) = 1_[ (€ —w+r =241+ p1 — py + 20) (3.5)
i=1
Nd—MNd+1
Priana(¢) = l_[ (¢ —w—d+2ng41+7+pu1— py +2i) 1<d<s (3.6)

i=1

where 42 < s + 1; ]'[?:1(~ --) = 1; w € C. One can easily derive these polynomials
(3.4)—(3.6) using the empirical procedures mentioned in [6]. Thus we obtain the following
ratio of ‘Drinfeld polynomial’:

Pa(u'i_%) M+l;—a—w(a) 7
P( 1):”—'J—"—wm) 3.7)
a u_a tq

where w@ ¢ C; the parametergb,} denote the Kac-Dynkin label (2.6). In deriving
relation (3.7), we assume the parametgrs are non-negative integers. However, as is
well known [10], one can construct a finite-dimensional module whose highest weight is
labelled by a Kac—Dynkin label with non-negative integfrs},-+1 and acomplexb, 1.
We then assume the parametgr; in the relation (3.7) can take non-integer value by
‘analytic continuation’. Finally by multiplying a naturgl-analogue of (3.7) on each site,
we obtain the left-hand side of the BAE (3.1).

We define the sets

J={1,2....r+s+2}

(3.8)
J.=1{1,2,...,r+1} J_={r+2r+3,....r+s+2}
with the total order
1<2<.---<r+s+2 (3.9
and with the grading
0 fora e Jy
_ 3.10
p(@) 1 fora e J_. ( )
Fora € J, set
a— 10, -2
A =aw QQ1(M<+1+—)1Q)Q(M(+:1- ) > aen
a—Af T d alt T d (3.11)

Qi 1(u+2r—a+1)0,u+2r—a+4
Qu1u+2r —a+3)Q.,(u+2r —a+2)

where Qo(u) = Q,.,12(u) = 1. Hereafter, we shall consider the case where the quantum
spaceW = ®jV=1Vl/j is a tensor-product of the modul; labelled by the Kac—Dynkin

acJ_

z(a; u) = Y, (u)
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label of the formb'® = b;8, ,11 (1 <a < r +s+1). In this case, the vacuum part of the
function z(a; u) takes on the following form

1 fora e J,
(3.12)

N
L) = — ws 1—b.
V() ||[u wptrt bil fora e J_.
j=1

3 [u—wi 4+ + 14+ b))

The generalization to the case of the more general quantum space will be achieved by
suitable redefinition of the function,(«), and such redefinition will not influence the
subsequent argument. We note that one can recover a function related to those in [17]
if one sets the parametets®, ¢ and {b\"’} in the BAE (3.1) to 01 and those in (2.6)
respectively. In this paper, we often express the functi@n u) as the bo@u, whose
spectral parameter will often be abbreviated. Under the BAE (3.1), we have

Re§¢:7d+u’((d) (zd;u)+z(d+1;u) =0 1<d<r (3.13)
Res__, 1, 00@0r+Lu)—z0r+ 2u)=0 (3.14)
Re§:_2r_2+d+”t:> (z(d;u) +z(d+21;u)) =0 r+2<d<r+s+1 (3.15)

On the skew-Young superdiagrainc u, we assign coordinateg, j) € Z? such that the

row indexi increases as we move downwards and the column ifidegreases as we move

from left to right and that1, 1) is on the top left corner ofc. Define an admissible tableau

b on the skew-Young superdiagraamc p as a set of elements(i, j) € J labelled by the

coordinateqi, j) mentioned above, obeying the following rule (admissibility conditions).
(1) For any elements af ,

b, j) < bl +1,)). (3.16)
(2) For any elements af_

b(i, j) < b, j+ 1. (3.17)
(3) For any elements aof

b(i, j) xbG, j+1 b, j) =<bli+1,)). (3.18)

Let B(A C wu) be the set of admissible tableaux eanc u. For any skew-Young
superdiagram. C u, define the functior?; -, («) as follows

Ten) = Y [ 020G, j)su— pa+ py — 2i +2)) (3.19)

beB(.Ccp) (i, j)e(rcp)

where the product is taken over the coordingieg) on A C u. If we replace the vacuum
party, (1) (3.12) of the functiorZ1, () with the one labelled by the Young superdiagram
with shape(1?), the functionZ(1:)(u) corresponds to the eigenvalue formula of the transfer
matrix of the Perk—Schultz model [41-43] (see also [17]). In this case, a special case of
the function711)(x) reduces to the eigenvalue formula by the algebraic Bethe ansatz (for
example, [44]:r = 1,s = 0 case; [45]:r = 0,s = 1 case; [46, 47]r = s = 1 case).

The following relations should be valid [7].
—Nj—i+j

Ticu(w) = _det (7"

1<i, j<m

= det (T} U—pr+pi+u+r—i—j+1) (3.21)

s —hiti—j
1<i ey TR

(u—pr+py—p; =2 +i+j—1) (3.20)
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where7?(u) = 7« (u). These relations will be verified by the same method mentioned
in [6]. We remark that the formula (3.19) reduces to the (classical) supercharacter formula
if we set

[a] — exp(e,) forae J,

3.22
[a] - exp(8,—r-1) forae J_. ( )

In this case, the functions (3.20) and (3.21) reduce to the Jacobi-Trudi formulae on
supersymmetric Schur functions [18, 19, 48, 49].
The following theorem is essential in the analytic Bethe ansatz.

Theorem 3.1 ([7]).For any integee, the functionZ () is free of poles under the condition
that the BAE (3.1) is valigl.

Applying theorem 3.1 to (3.20), one can show tlat, (v) is free of poles under the
BAE (3.1).

Owing to the admissibility conditions (3.16)—(3.18), for any Young superdiagram
(#r+1 = s +1, uy > r+1) and non-negative integer only such tableaé € B(i+ (c"*1))
asbh(i,j)=iforl<i<r+11<j<cbl j)edforr+2<i<u, 1<) <y
is admissible. Then the following relation is valid:

Qry1u —c+py—p1—r—1

Orpa(u+cH+py—pr—r—1
XH,(u—p1+ pry2—c—r—1) (3.23)

Ty ey (u) = Ta(u+pui+c—r—1)

wherep + (¢ = (ua+c, o+, ooy 146 Mo - )y = (U1, 2, - -2 Hrsd),
V= (v1, V2, ..oy Vyyr—1) = (W42, Uit 3s -+ -5 ) @NAH, (u) is the function, (u) whose
admissible tableauB(v) are restricted to the sets of elements of theJset

As a corollary we have (see [7])

r+1
72+t+1(”) = T((cts+1y+1) (1)

Q1w —c—s—1) )
= T . 3.24
Ortutec—s—1) " s (0 (3:24)
In deriving relations (3.23) and (3.24), we assute Z-,. However, these relations will
also be valid forc € C by ‘analytic continuation’. We can easily observe this fact from the
right-hand side of relations (3.23) and (3.24). Denote the right-hand side of relations (3.23)

and (3.24) byZ,...(u)} and 7'} (), respectively for arbitrary € C. A crucial condition

for the functionﬁm(u) to be the eigenvalue formula of a transfer matrix is given as follows.

Theorem 3.2For anyc € C, the functionﬁm(u) is free of poles under the condition that
the BAE (3.1) is valid.

As a corollary, we have the following.

Corollary 3.3. For anyc e C, the function7” !

<1s1+1(w) is free of poles under the condition
that the BAE (3.1) is valid.

For anyc € Z, theorem 3.2 and corollary 3.3 follow from [7], while for anye C, they
require proofs. In proving theorem 3.2, we use the following lemmas.

1 Hereafter singularities of the vacuum parts of the DVFs, which can be removed by multiplying overall scalar
functions are out of the question.
I See appendix B for an example B (u).
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Lemma 3.4The function
Tp(u)
Or1(u — p1)
is free of poles under the condition that the BAE (3.1) is valid.

(3.25)

Proof. Owing to [7], the functiorZ; () is free of poles under the BAE (3.1). We only have
to show that function (3.25) is free of polesiat= u! ™" 4+ 41 1k =1,..., N, ;1. We shall
show that7; () is divisible by Q,1(u — 1). In the set{z(a; u +&) 1 a € J, & € C}, only
z2r+Lu—r+1—p1) andz(r+2; u —r +1— pug) haveQ,1(u — p1) in their numerators.
Thus we only have to show that every termZj(x) containsz(r + 1; u —r + 1 — pq) Or
zr+2,u —r +1— uq). Then all we have to do is to show thatr +1,1) = r + 1 or
r+2in (3.19) fori = ¢, u = 1 since the argument aof(b(i, j); u — pu1 +r +1—2i +2j)

in (3.19) becomes — r + 1 — u; only when its coordinate i¢i, j) = ( + 1,1). From
the admissibility conditions, we can develop the following argumentb(#ff+ 1,1) < r
thenb(1,1) < 1 sinceb(r+1,1) € J.; b(1,1) < b(2,1) <--- <b(r+1,1) <r. This
contradicts the fact that(1,1) € J. If b(r +1,1) = r+3 thenb(r + 1, 1) > r+s+2
sinceb(r+1,1) € J_;r4+3=<b(r+1,1) <br+1,2) <--- <b(r+1, p,y41); ry1 = s+1.
This contradicts the fact thatr + 1, u,11) € J. Thusb(r + 1, 1) must ber + 1 orr + 2.

In [7], we did not use the facto@, 1(z — w1) to prove the fact tha¥; («) does not have
a colourr 4+ 1 pole under the BAE (3.1). So division b9, 1(u — w1) does not influence
the proof of the pole freeness @} («) under the BAE (3.1). Therefore function (3.25) is
free of poles under the BAE (3.1). O

Lemma 3.5.

(1) The function™, () is free of colourb (b € J — {r + 1, r + s + 2}) poles under the
condition that the BAE (3.1) is valid.

(2) The function

Qr1(u — vi + Vi 47 4+ DH, () (3.26)

is free of poles under the condition that the BAE (3.1) is valid.

Proof.
(1) One can verify the following relation in the same way as relation (3.20).

Vi—itj

H,(u) = det (H; u—vi+vi—vi+i+j—1) (3.27)
1<i, j<n !

where S, (u) = Hney(u). Then we only have to show that the functidff (u) is free of
colourb (b € J —{r + 1, r +s+2}) poles under the BAE (3.1). For simplicity, we assume
that the vacuum parts are formally trivial, that is, the left-hand side of the BAE (3.1) is
constantly—1. The functionz(d; u) = with d € J has the colou pole only for

d =b orb+1, sowe shall trace onI@ or (b e J.—{r+s+2}). DenoteS;

the partial sum oft (u), which containsk boxes amongb | or |6 +1]. Apparently, So
does not have colous pole. Owing to relation (3.15)$; does not have a colour pole
(b # r + 1) under the BAE (3.1).
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The casgk > 2): S, is the summation of the tableaux of the form
§
b

fle,n, &, ¢,u) = b | vzmi2 _ Q1w+ 2r+3—-b—20)0y(v+2r +4—b)
R b 1 v Qi H+2r —b+3)Q(v+2r +4—b—2n)

b+1| 242
4
XQb(v+2r+2—b—2k)Qb+1(v+2r+3—b—2n)
Op(v+2r4+2—0b—-2n)Qp1(v+2r +3—>b— 2%k)

0<n<k

(3.28)

where and are columns with total length— k, which do not contail@ and;
beJ_—{r+s+2}; v=u+h: his some shift parameter and is independent;ofthe
function X does not have a colour pole and is independent af. f(k,n,&,¢,u) has
colourb poles atu = —h —2r —2+b+2n+ul? andu = —h —2r —44b+2n +u for
1<n<k-1;atu = —h—2r—2+b+u;)b) forn =0; atu = —h—2r—4+b+2k+u;,b)

for n = k. Obviously, coloun residue au = —h—2r—2+b+2n+u§,”) in fk,n, &, ¢,u)

and f(k,n+1, &, ¢, u) cancel each other under the BAE (3.1). Thus, under the BAE (3.1),
Zﬁzof(k, n,&,¢,u) is free of colourb poles ¢ # r + 1), so isS;.

(2) Among the boxeg[a|: a € J_}, only the box has colourr + 1 pole. We
shall show that the colour + 1 poles inH, (), which originate from the bo are
cancelled byQ,;1(u —v1 +v] +r + 1). Owing to the admissibility condition
appears consecutively only at the poiits1), (2, 1), ..., (k,1) : k < v] in each term of

‘H,(u). Then the contribution to the term ofH, (1) which containsk is

k

HZ(7+2,u—vl+vi—2j+2)

j=1
_ Ol —vi+vi4+r+1-200, 2 —v1+vi+r+2)
T O — vt v+ DOpalu —viF vk +2-28)

Thus, the colour + 1 poles inH, («), which originated fro are cancelled by
Qria(u —vi+vy+r+1). U

(3.29)

The dress part of the functidﬁw(u) carriessl(r + 1|s + 1) weight A(c) (2.8). One
can observe this fact from the ‘top term’ [5, 6] of the function. The ‘top term’ is considered
to be related with the highest weight vector. We speculate the ‘top term’ of the function
ﬁm(u) for large|q| is proportional to
r+1 wi

Qria(u—c+py—pr—r—1 . , . .
X z(i;u — 1+ puy+c—2i +2j)
Qrpa(u+c+puy—pr—r—1) 1111 '

s+1 nj
><l_[Hz(r+j+1;u—,u,1+,u’l—c—2r—2—2i+2j)
j=li=1
o g AL Vo) — (=20 Nitibi—2Nr st ac (3.30)
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where we omit the vacuum part. We may think of this circumstance as a generalization of
the top-term hypothesis [5, 6] to the case of the non-integral highest weight. We believe
that the functionfu;c(u) yields actual spectra of the transfer matrix whose auxiliary space is
characterized by the highest weightc) at least as long as the typicality condition (2.9) is
satisfied. In fact, special cases of the funcﬁi';r;y(u) are in agreement with the results: for
example, fors/(2]1); u = (2%) case: [14, 15] (see also [11]). For the funct'rﬁ’,nc(u), one
will be able to use the®k matrix which is constructed by the tensor product graph method
[12, 13].

As for negative integer, care should be taken because the atypicality condition may
hold. In this case, the dimensionality of the mod#leA (¢)) is no longer the one given by
formula (2.10). For example, far (2]2) casej’lz(u) has the form

T2 () = T (u) + Ya(u — s — DT w). (3.31)

In this case, the eigenvalue formula in the DVF labelled by the Young superdiagram with
shape(1?) will be the function72(u) rather than the functiof*(u).

Now we briefly mention the functional relations among the functions introduced in this
section. Thanks to the Jacobi identity, the following relation holds

T — DT wu+1) =T T ) + T )T (w) (3.32)

wherea,m € Zso. This functional relation is a specialization of the Hirota bilinear
difference equation [50] and it is the same as the functional relation discussed in [7] except
for the vacuum part. Other functional relations in [7] are also valid except for the vacuum
part. Note, however, that there are another functional relations, which arise from a one-
parameter family of finite-dimensional representations. For exarfplg) satisfies

Te — T e+ d) = Toa @ T era () (3.33)

wherec,d € C. Foru = (m"*1), m € Z>,,1; c = 0; d = 1, this functional relation reduces
to the one in [7].

4. Summary and discussion

In this paper, we have executed the analytic Bethe ansatz related to a one-parameter family
of finite-dimensional representations of the type 1 Lie superalgélirat 1|s + 1) based

on the BAE (3.1) with the distinguished simple root systemidf + 1|s + 1). Eigenvalue
formulae of transfer matrices in DVF are proposed for a one-parameter family of finite-
dimensional representations. The key is the top-term hypothesis and the observation that
(r + 1th Kac—Dynkin label can take non-integer value. Pole freeness of the DVF was
shown. Functional relations have been given for the DVF.

We emphasize that our method explained in this paper is still valid even if factors such
as gauge factor, extra sign (different fraqm1)9e9% in (3.1)), etc appear in the BAE (3.1),
provided that such factors do not influence the analytical property of the right-hand side of
the BAE (3.1).

There is a remarkable coincidence [51, 52] between the free field realization of the
generators ot/, (GV) associated with the classical simple Lie algelgiamd the eigenvalue
formulae [5] in the analytic Bethe ansatz. As for a Lie superalgébrase, especially in
relation to a one-parameter family of finite-dimensional irreducible representations, such a
relation has not been discussed to date. An extensive study will be desirable.

The Lie superalgebras or their quantum analogues are not straightforward generalizations
of their non-supercounterparts. They have several inequivalent sets of simple root systems
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depending on the choices of their Borel subalgebras. In view of this fact, we generalized
[8] our result [7] to any simple root system ef(r + 1|s + 1). We then discussed relations
among sets of the BAE for any simple root systems using the particle—hole transformation
[53]. We pointed out that the particle—hole transformation is related to the reflection with
respect to the element of the Weyl supergroup for odd simpleaosith («|a) =

There is another type 1 superalgebra @8h), which also admits a one-parameter
family of finite-dimensional representations (see [54, 55]). It will be an interesting problem
to extend a similar analysis discussed in this paper related t@|@sp.

Functional relations among fusion transfer matricedirdite temperatures have been
given recently in [56] and these functional relations are transformed into TBA equations
(thermodynamic Bethe ansatz equations) without using string hypothesis. These TBA
equations do not carry continuous parameters, which we discussed in this paper. Whether
we can derive TBA equations with continuous parameters from our functional relations is
an open problem.
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Appendix A. An example of the BAE for p(1) = 1, p(2) = p(3) = 0 grading

Based on the knowledge presented in [6], we will consider the BAEf#{1) with the
gradingp(1) = 1, p(2) = p(3) = 0. In this case, the simple roots, the sets (3.8) and the
functions (3.11) have the forma = 81 — €1, a0 = €1 — €2, J, = {2, 3}, J_ = {1} and

01(u + 1) 01 +1)Qa(u — 2) Qou +2)
2:
=W — V20 G = Do) =0

(A.1)

respectively (see [7, 8]). The top term labelled by the Young superdiagram with éhape
is proportional t, we then find that the ‘Drinfeld polynomial’ is

p _fE-w fora=1 A2
a§) = 1 fora = 2. A2)

For anyb € Z-1, the top term labelled by the Young superdiagram with shiapewill be
proportional to

122 _’ﬁQl(u+2j+1—b—2) (A3)
1133 1101u+2j—-1-b-2) '

where we omit the vacuum part. We then find that the ‘Drinfeld polynomial’ has the
following form

b+l
E-—w—-2j+b+2 fora=1
P,(&) = ,11 (A.4)

1 fora = 2.
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Following [6], the BAE whose vacuum part corresponds to the quantum space
®]1.V:1 W; labelled by the Young superdiagrams with sha: j =1and(1'): 2< j < N
reads as follows
[ —wi—b =1 L —wy — 1] Q2 — 1)
[ —wi+b+1] i3 [u® —w; +1] Qo +1)
01w =) 0xu? +2)

01” + ) Qo — 2)
where the parametefg,} arer; = —1 andr, = 1. We assume that the paramebecan
take non-integer value by ‘analytic continuation’ as in section 3. Note that this BAE is in
relation to the one in [38]. The vacuum part(u) of the function@ is determined so as
to make the functior?;!(u) = — +12|4|3|to be free of poles under the BAE (A.5).
Up to an overall scalar function, we have

Yi(u) =1 (A.6)

_ [y —wi+b] [ —wj]
Val) = Ya() = g5 ,11 T (A.7)

Compare the BAE (A.5) with the one (3.1) fet(2|1) with the gradingp(1) = p(2) = 0,
p@ =landb” =0, b" =1 2< j < N; bP =b; b =0 2< j < N,
whose vacuum part also originates from the quantum space ®J’.V:1 W; labelled by the

Young superdiagrams with shage?): j = 1; (11): 2 < j < N and analytic continuation
argument. Note that this BAE is also in relation to the one in [38].

(A.5)

Appendix B. An example of the DVF

In this section, we present an example of the D’YZ’EC(u) and theorem 3.2 fosi(1]2);
n=(21) ;b =b(n(3.12);J. ={1}; J_ = {2, 3} case:
giiZJr—z_gT@)(u e+ DHyw—c—2)
_¢(=1-b—c+tu) Q1(=3—c+u)Qa(—c+u)
B ¢<—1+b—c+u>{_ 0138+ c+u)Q2(—2—c+u)
dl—b+c+u)p@B—-b+c+u)Qi1(—1—c+u)Qr(—4—c+u)
A+ b+c+uwdB+b+c+u)01(l+c+u)0x—2—c+u)
¢A—-b+c+up@B—-b+c+u)Q1(—3—c+u)Qa(—c+u)
oA +b+c+wdB+b+c+u)Qid+c+u)Q2-2—c+u)
$B—b+c+u)01(—1—c+u)Q2(—4—c+u)Qz(c+u)
d@B+b+c+uw)Q1(l+c+u)Qa(-2—c+u)Q22+c+u)
B —b+c+u)01(—3—c+u)Q2(—c+u)Q2(c +u)
d@B+b+c+uw)Qi1(l+c+u)Qa(-2—c+u)Q22+c+u)
$@B—b+c+u)01(—1—c+u)Q2(—4—c+u)02(4+c+u)
dB+b+c+u)Q1B3+c+u)02(-2—c+u)Q2(2+c+u)
$#B—b+c+u)01(—3—c+u)Q2(—c+u) Q204+ c+u)
¢@+b+c+u)01B+c+u)Q2(—2—c+u)Q2(2+c+u)
Q1(-1—c+u)Qa(—4—c+u)
" 01B+c+u)Qa(—2—c+u) }

To1y.c() =

(B.1)
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where
Tow=[1 1]-[1 2]-[1 3]+[2 3]
_ 01(=2+u) ¢Q2—-b+u)01(=2+u)0>(3+u)

01(2+u) ¢2+b+u)01(2+u)Q2(1+u)
92 -b+u)01(=2+u)Q2(=1+u)

¢+ b+ 1) Q1(u) Q2(1 + u)
d(=b+u)p2—>b+u)Q1(—2+ u) (B 2)
¢(b +1)p 2+ b + 1) Q1(u) '
dAL—b+u) [01(~1+uw)Q2R2+u)  Qa(—2+u)
=—2|—|3|=-— B.3
Ha@w o(L+b+u) { 01+ w0 T 0w } (8:3)
N
$) = Jlu—wj]. (B.4)
j=1

The first term in the right-hand side of (B.1) is the top term, which is related to the highest
weight (2+c)e; + 1. Owing to theorem 3.2, the DVF (B.1) is pole-free under the following
BAE

P’ +b) _ Qo +1)
pud —b) Qo 1)
) (2)
_po Qe £DOy =Dy gy
011 — 102 +2)

We note the fact that if the parametelis a positive integel’f(zyl);c(u) has a determinant
expression whose matrix elements are only the functions labelled by Young superdiagrams
with one column:

1<k<M
(B.5)

T2.1:c() = To4e,1) (1)
= det (T} u—c—p+i+j-1) (B.6)

1<i, j<e+2

wherep) =2; ! =1: 2<i < c+2; ¢ € Zo.
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